Minggu, 19 Maret 2017

PLTN (PEMBANGKIT LISTRIK TENAGA NUKLIR)

PLTN (PEMBANGKIT LISTRIK TENAGA NUKLIR)

Pembangkit Listrik Tenaga Nuklir atau yang lebih dikenal dengan singkatan PLTN, sudah digunakan teknologinya lebih dari 50 tahun yang lalu. Keunggulan PLTN adalah tidak menghasilkan emisi gas CO2 sama sekali. Selain itu PLTN juga mampu menghasilkan daya stabil yang jauh lebih besar jika dibandingkan dengan pembangkit listrik lainnya. Perlu diketahui juga bahwa bahan bakar uranium yang sudah habis dipakai dapat didaur ulang kembali menghasilkan bahan bakar baru untuk teknologi di masa depan.

Indonesia sebenarnya sangat cocok mengembangkan pembangkit listrik ini, sebagai upaya diversifikasi penggunaan pembangkit listrik primer berbahan bakar fosil, seperti batubara, minyak bumi, dan gas alam. Dengan penanggulangan radiasi yang cermat dan berlapis, PLTN dapat menjadi solusi kebutuhan energi listrik yang besar di Indonesia.

PRINSIP KERJA PLTN

Prinsip kerja PLTN hampir mirip dengan cara kerja pembangkit listrik tenaga uap (PLTU) berbahan bakar fosil lainnya. Jika PLTU menggunakan boiler untuk menghasilkan energi panasnya, PLTN menggantinya dengan menggunakan reaktor nuklir.

Seperti terlihat pada gambar 1, PLTU menggunakan bahan bakar batubara, minyak bumi, gas alam dan sebagainya untuk menghasilkan panas dengan cara dibakar, kemudia panas yang dihasilkan digunakan untuk memanaskan air di dalam boiler sehingga menghasilkan uap air, uap air yang didapat digunakan untuk memutar turbin uap, dari sini generator dapat menghasilkan listrik karena ikut berputar seporos dengan turbin uap.

PLTN juga memiliki prinsip kerja yang sama yaitu di dalam reaktor terjadi reaksi fisi bahan bakar uranium sehingga menghasilkan energi panas, kemudian air di dalam reaktor dididihkan, energi kinetik uap air yang didapat digunakan untuk memutar turbin sehingga menghasilkan listrik untuk diteruskan ke jaringan transmisi,.

STRUKTUR ATOM URANIUM DAN REAKSI FISI

Agar dapat lebih mudah memahami bagaimana terjadinya reaksi fisi didalam reaktor PLTN, pada sub-bab ini akan disampaikan tentang bagaimana strutur atom didalam uranium dan apakah itu reaksi fisi.

Strukut Atom Uranium

Sejatinya segala unsur yang terdapat di alam terbentuk dari kumpulan atom-atom. Ada 92 jenis atom yang telah didefinisikan hingga saat ini. Inti dari suatu atom terdiri atas proton yang bernilai positip dan neutron yang bersifat netral. Disekitar intinya terdapat elektron yang mengelilingi, biasanya berjumlah sama dengan proton dan terikat dengan gaya elektromagnetiknya. Jumlah proton pada atom menjadi ciri khas suatu jenis atom dan lebih dikenal dengan sebutan nomer atom, yang menentukan unsur kimia atom tersebut.

Unsur uranium memiliki jumlah proton 92 buah atau dengan kata lain nomer atom Uranium adalah 92. Namun di alam, terdapat 3 jenis unsur yang memiliki jumlah proton 92 buah, masing-masing memiliki jumlah neutron sebanyak 142, 143, dan 148 buah. Unsur yang memiliki 143 buah neutron ini disebut dengan Uranium-235, sedangkan yang memiliki 148 buah neutron disebut dengan Uranium-238. Suatu unsur yang memiliki nomer atom sama namun jumlah neutron yang berbeda biasa disebut dengan isotop. Gambar berikut adalah struktur dari atom Uranium dan tabel yang menjelaskan tentang isotopnya.

Uranium yang terdapat di alam bebas sebagian besar adalah Uranium yang sulit bereaksi, yaitu Uranium-238. Hanya 0,7 persen saja Uranium yang mengandung isotop Uranium-235. Sedangkan bahan bakar Uranium yang digunakan di PLTN adalah Uranium yang kandungan Uranium-235 nya sudah ditingkatkan menjadi 3-5 %.

Gambar 2 Struktur atom Uranium

Reaksi Fisi Uranium

Perlu diketahui bahwa reaksi fisi bisa terjadi disetiap inti atom dari suatu unsur tanpa terkecuali. Namun reaksi fisi yang paling mudah terjadi adalah reaksi pada inti atom Uranium. Uranium pun sama halnya, yang paling mudah terjadi reaksi adalah Uranium-235, sedangkan Uranium-238 memerlukan energi yang lebih  besar agar dapat terjadi reaksi fisi ini.

Reaksi fisi terjadi saat neutron menumbuk Uranium-235 dan saat itu pula atom Uranium akan terbagi menjadi 2 buah atom Kr dan Br. Saat terjadi reaksi fisi juga akan dihasilkan energi panas yang sangat besar. Dalam aplikasinya di PLTN, energi hasil reaksi fisi ini dijadikan sumber panas untuk menghasilkan uap air. Uap air yang dihasilkan digunakan untuk memutar turbin dan membuat generator menghasilkan listrik.

Pada saat Uranium-235 ditumbuk oleh neutron, akan muncul juga 2-3 neutron baru. Kemudian neutron ini akan menumbuk lagi Uranium-235 lainnya dan muncul lagi 2-3 neutron baru lagi. Reaksi seperti ini akan terjadi terus menerus secara perlahan di dalam reaktor nuklir.

Neutron yang terjadi akibat reaksi fisi sebenarnya bergerak terlalu cepat, sehingga untuk menghasilkan reaksi fisi yang terjadi secara berantai kecepatan neutron ini harus diredam dengan menggunakan suatu media khusus. Ada berbagai macam media yang digunakan sampai saat ini antara lain air ringan/tawar, air berat, atau pun grafit.  Secara umum kebanyakan teknologi PLTN di dunia menggunakan air ringan (Light Water Reactor, LWR).

Perlu diperhatikan disini bahwa di dalam reaktor nuklir, bahan bakar Uranium yang digunakan dijaga agar tidak sampai terbakar atau mengeluarkan api. Sebisa mungkin posisi bahan bakarnya diatur sedemikian hingga agar nantinya hasil reaksi fisi ini masih bisa diolah kembali untuk dijadikan bahan bakar baru untuk digunakan pada teknologi PLTN di masa yang akan datang.

Gambar 3 Proses terjadinya reaksi fisi

Besarnya Energi Reaksi Fisi

Gambar 4 berikut ini adalah data tentang jumlah bahan bakar yang diperlukan dalam 1 tahun untuk masing-masing pembangkit listrik berkapasitas 1000 MW. Disini terlihat bahwa untuk 1 gram bahan bakar Uranium dapat menghasilkan energi listrik yang setara dengan 3 ton bahan bakar batubara, atau 2000 liter minyak bumi. Oleh karena energi yang dihasilkan Uranium sangat besar, bahan bakar PLTN juga dapat menghemat biaya di pengakutan dan penyimpanan bahan bakar pembangkit listrik

Gambar 4 Banyaknya bahan bakar yang diperlukan dalam 1 tahun

untuk masing-masing pembangkit listrik berkapasitas 1000 MW

Senin, 13 Maret 2017

BAHAYA-BAHAYA YANG TIMBUL PADA GARDU INDUK PADA KEADAAN GANGGUAN TANAH

Secara umum kita tinjau dahulu bahaya-bahaya yang mungkin dapat ditimbulkan oleh tegangan atau arus listrik terhadap manusia mulai dari yang ringan sampai yang paling berat yaitu: terkejut, pingsan atau mati.

Ringan atau berat bahaya yang timbul, tergantung dari faktor-faktor dibawah ini sebagai berikut :
1. Tegangan dan kondisi orang terhadap tegangan tersebut.
2. Besarnya arus yang melewati tubuh manusia
3. Jenis arus, searah atau bolak-balik

Tegangan
Pada sistem tegangan tinggi sering terjadi kecelakaan terhadap manusia, dalam hal terjadi tegangan kontak langsung atau dalam hal manusia berada di dalam suatu daerah yang mempunyai gradien tegangan yang tinggi. Akan tetapi sebenarnya yang menyebabkan bahaya tersebut adalah besarnya arus yang mengalir dalam tubuh manusia.
Khususnya pada gardu-gardu induk kemungkinan terjadinya bahaya terutama disebabkan oleh timbulnya gangguan yang menyebabkan arus mengalir ke tanah. Arus gangguan ini akan mengalir pada bagian-bagian peralatan yang terbuat dari metal dan juga mengalir dalam tanah di sekitar gardu induk. Arus gangguan tersebut menimbulkan gradien tegangan diantara peralatan dengan peralatan, peralatan dengan tanah dan juga gradien tegangan pada permukaan tanah itu sendiri. Untuk menganalisis lebih lanjut akan ditinjau beberapa kemungkinan terjadinya tegangan dan kondisi orang yang sedang berada di dalam dan di sekitar gardu induk tersebut.

Macam Tegangan
Sulit untuk menentukan secara tepat mengenai perhitungan tegangan yang mungkin timbul akibat kesalahan ke tanah terhadap orang yang sedang berada di dalam atau di sekitar gardu iduk, karenanya banyaknya faktor yang mempengaruhi dan tidak diketahui.
Untuk menganalisis keadaan ini maka diambil.....
beberapa pendekatan sesuai dengan kondisi orang yang sedang berada di dalam atau di sekitar gardu induk tersebut pada saat terjadi kesalahan ke tanah.
Pada hakekatnya perbedaan tegangan selama mengalir nya arus gangguan tanah dapat digambarkan sebagai berikut :
1. Tegangan sentuh
2. Tegangan langkah
3. Tegangan pindah

Tegangan Sentuh
Tegangan sentuh adalah tegangan yang terdapat diantara suatu obyek yang disentuh dan suatu titik berjarak 1 meter, dengan asumsi bahwa obyek yang disentuh dihubungkan dengan kisi-kisi pengetanahan yang berada dibawahnya.
Besar arus gangguan dibatasi oleh tahanan orang dan tahanan kontak ke tanah dari kaki orang tersebut, seperti pada gambar 7-1.


Tegangan Langkah
Tegangan langkah adalah tegangan yang timbul di antara dua kaki orang yang sedang berdiri di atas tanah yang sedang dialiri oleh arus kesalahan ke tanah. Untuk lebih jelas dapat dilihat pada gambar 7.2.
Dalam hal ini dimisalkan jarak antara kedua kaki orang adalah 1 meter dan diameter kaki dimisalkan 8 cm dalam keadaan tidak memakai sepatu


Tegangan Pindah
Tegangan pindah adalah hal khusus dari tegangan sentuh, dimana tegangan ini terjadi bila pada saat terjadi kesalahan orang berdiri di dalam gardu induk, dan menyentuh suatu peralatan yang diketanahkan pada titik jauh sedangkan alat tersebut dialiri oleh arus kesalahan ke tanah, gambar 7.3.
Dari gambar 7.3 terlihat bahwa, orang akan merasakan tegangan yang lebih besar bila dibandingkan dengan tegangan sentuh seperti pada gambar 7.1. Tegangan pindah akan sama dengan tegangan pada tahanan kontak pengetanahan total. Tegangan pindah itu sulit untuk dibatasi, tetapi biasanya konduktor-konduktor telanjang yang terjangkau oleh tangan manusia telah diisolasi

Arus Yang Melalui Tubuh Manusia
Kemampuan tubuh manusia terhadap besarnya arus yang mengalir di dalamnya. Tetapi berapa besar dan lamanya arus yang masih dapat ditahan oleh tubuh manusia sampai batas yang belum membahayakan sukar ditetapkan. Dalam hal ini telah banyak diselidiki oleh para ahli dengan berbagai macam percobaan baik dengan tubuh manusia sendiri maupun menggunakan binatang tertentu. Dalam batas-batas tertentu dimana besarnya arus belum berbahaya terhadap organ tubuh manusia telah diadakan berbagai percobaan terhadap beberapa orang sukarelawan yang menghasilkan batas-batas besarnya arus dan pengaruhnya terhadap manusia yang berbadan sehat. Batas-batas arus tersebut dibagi sebagai berikut :
1. Arus mulai terasa atau persepsi.
2. Arus mempengaruhi otot.
3. Arus mengakibatkan pinsan atau mati atau arus fibrilasi
4. Arus reaksi

Arus Persepsi
Bila seseorang memegang penghantar yang diberi tegangan mulai dari harga nol dan dinaikkan sedikit demi sedikit, arus listrik yang melalui tubuh orang tersebut akan memberikan pengaruh. Mula mula akan merangsang syaraf sehingga akan terasa suatu getaran yang tidak berbahaya bila dengan arus bolak balik dan akan terasa sedikit panas pada telapak tangan.
Pada Electrical Testing Laboratory New York tahun 1993 telah dilakukan pengujian terhadap 40 orang laki-laki dan perempuan, dan diperoleh arus rata-rata yang disebut threshold of perception current sebagai berikut :
1. untuk laki-laki : 1,1 mA.
2. Untuk perempuan : 0,7 mA.

Arus Yang Mempengaruhi Otot
Bila tegangan yang menyebabkan terjadinya tingkat arus persepsi dinaikkan lagi maka orang akan merasa sakit dan kalau terus dinaikkan maka otot-otot akan kaku sehingga orang tersebut tidak berdaya lagi untuk melepaskan konduktor yang dipegangnya.
Di University of California Medical School telah dilakukan penyelidikan terhadap 134 orang laki-laki dan 28 orang perempuan dan diperoleh angka rata-rata yang mempengaruhi otot sebagai berikut :
1. untuk laki-laki : 16 mA.
2. Untuk perempuan : 10,5 mA

Berdasarkan penyelidikan ini telah ditetapkan batas arus maksimal dimana orang masih dapat dengan segera melepaskan konduktor bila terkena arus listrik sebagai berikut :
1. untuk laki-laki : 9 mA.
2. Untuk perempuan : 6 mA.

Arus Fibrilasi
Apabila arus yang melewati tubuh manusia lebih besar dari arus yang mempengaruhi otot dapat mengakibatkan orang menjadi pingsan bahkan sampai mati. Hal ini disebabkan arus listrik tersebut mempengaruhi jantung sehingga jantung berhenti bekerja dan peredaran darah tidak jalan dan orang segera akan mati.
Untuk mendapatkan nilai pendekatan suatu percobaan telah dilakukan pada University of California oleh Dalziel pada tahun 1968 , dengan menggunakan binatang yang mempunyai badan dan jantung yang kira-kira sama dengan manusia disebutkan bahwa 99.5 % dari semua orang yang beratnya kurang dari 50 kg masih dapat bertahan terhadap besar arus dan waktu yang ditentukan

Arus Reaksi
Arus reaksi adalah arus yang terkecil yang dapat menakibatkan orang menjadi terkejut, hal ini cukup berbahaya karena dapat mengakibatkan kecelakaan sampingan. Karena terkejut orang dapat jatuh dari tangga, melemparkan peralatan yang sedang dipegang yang dapat mengenai bagian-bagian instalasi bertegangan tinggi sehingga terjadi kecelakaan yang lebih fatal.
Penyelidikan yang terperinci telah dikemukan oleh DR. Hans Prinz dimana batasan-batasan arus tersebut seperti tabel 7.3.

Tahanan Tubuh Manusia
Tahanan tubuh manusia berkisar di antara 500 Ohm sampai 100.000 Ohm tergantung dari tegangan, keadaan kulit pada tempat yang mengadakan hubungan (kontak) dan jalannya arus dalam tubuh. Kulit yang terdiri dari lapisan tanduk mempunyai tahanan yang tinggi, tetapi terhadap tegangan yang tinggi kulit yang menyentuh konduktor langsung terbakar, sehingga tahanan dari kulit ini tidak berarti apa-apa. Sehingga hanya tahanan tubuh yang dapat membatasi arus.

Berdasarkan hasil penyelidikan oleh para ahli maka sebagai pendekatan diambil harga tahanan tubuh manusia sebesar 1000 Ohm.

Kamis, 09 Maret 2017

Inovasi Dalam Bidang Pembangkit Listrik

Inovasi Dalam Bidang Pembangkit Listrik

Pembangkit Listrik Tenaga Garam

Mencari alternatif sumber energi merupakan suatu penelitian yang saat ini terus digagas oleh para ilmuwan. Mereka semua merasa khawatir sumber energi yang telah digunakan selama ini akan habis sehingga mereka berusaha mencari inovasi-inovasi baru yang bermanfaat. Beberapa pembangkit listrik yang telah ditemukan di antaranya adalah nuklir, udara, air, panas bumi, gravitasi bumi, magnet, serta cahaya matahari. Dan penemuan baru yang ditemukan oleh para ilmuwan berjasa tersebut adalah pembangkit listrik tenaga garam.

Prinsip Kerja Pembangkit Listrik Tenaga Garam

Penemuan sumber energi dengan bahan dasar yang sangat ekonomis merupakan penemuan cerdas yang perlu diacungi jempol. Penelitian yang ditemukan oleh para ilmuwan dari Stanford University Amerika Serikat ini memiliki prinsip kerja hampir sama dengan sebuah baterai konvensional.

Dengan menggunakan baterai galvanis, air garam yang mengandung natrium klorida ini akan ter-ionisai menjadi ion positif yaitu natrium dan ion negatif yaitu klorida. Dan menjadi sumber energi yang dapat menghasilkan listrik seperti nyala lampu pada percobaan yang dilakukannya, dengan waktu yang lama.

Percobaan awal yang dilakukan adalah dengan menggunakan air garam dengan volume 200 ml dan hasilnya adalah sebuah lampu dapat menyala selama kurang lebih 8 jam. Namun, setelah 8 jam, baterai tersebut harus diganti dengan yang baru karena sudah tidak dapat menghasilkan listrik dalam waktu 6 bulan ke depan.

Cara Membuat Pembangkit Listrik Tenaga Garam

Menguji efektivitas sumber energi baru ini bisa Anda lakukan dengan cara yang mudah. Berikut langkah-langkahnya :

Siapkan semua peralatan yang dibutuhkan yaitu, gelas, air garam, kebel, baterai, kabel, dan lampu.Lalu, masukkan air larutan garam tersebut ke dalam gelasDisusul dengan memasukkan baterai dan hubungkan kabel yang telah terhubung ke lampu, melalui kutub positif dan kutub negatif.Jika lampu dapat menyala berarti proses kerja Anda telah berhasil

Rancangan Sederhana Pembangkit Listrik tenaga Garam

Itulah beberapa penjelasan yang dapat kami bagikan mengenai cara menciptakan sumber energi listrik yang baru dengan menggunakan bahan yang murah dan sangat mudah Anda dapatkan yaitu menggunakan larutan air garam.

Setelah dilakukan penelitian tersebut, di Filipina mulai memanfaatkan pembangkit listrik air garam untuk menyalakan 600 lampu setiap harinya.

Demikian informasi ini kami bagikan. semoga dapat menjadi referensi baru bagi Anda.

Selasa, 07 Maret 2017

Kinds of interference on the generator and its consequences


Dalam suatu operasi sistem tenaga listrik, terdapat banyak sekali kondisi yang mempengaruhi kinerja dari komponen-komponen yang ada didalamnya. Kondisi-kondisi tersebut dapat berupa kondisi normal (berbeban, tanpa beban, dll) dan juga kondisi tak normal (gangguan). Salah satu komponen sistem tenaga listrik yang kinerjanya berpengaruh jika sedang dalam kondisi gangguan adalah generator.

  Gangguan yang terdapat pada generator ada banyak jenis. Secara umum, gangguan pada generator dapat diklasifikasikan menjadi 3 jenis, yaitu : 

Gangguan Listrik (Electrical Fault)

Jenis gangguan ini adalah gangguan yang timbul dan terjadi pada bagian-bagian listrik dari generator. Gangguan-gangguan tersebut antara lain :

-  Hubung Singkat 3 (Tiga) Fasa

   Terjadinya arus lebih pada stator yang dimaksud adalah arus lebih yang timbul akibat terjadinya hubungan singkat tiga fasa (three phase fault). Gangguan ini akan menimbulkan loncatan bunga api dengan suhu tinggi yang akan melelehkan belitan dengan resiko terjadinya kebakaran jika isolasi tidak terbuat dari bahan yang anti api (non flammable).

-  Hubung Singkat 2 (Dua) Fasa

   Gangguan hubung singkat 2 fasa (unbalance fault) lebih berbahaya dibanding gangguan hubung singkat tiga fasa (balance fault) karena disamping akan terjadi kerusakan pada belitan, akan timbul pula vibrasi pada kumparan stator. Kerusakan lain yang timbul adalah pada poros (shaft) dan kopling turbin akibat adanya momen puntir yang besar.

-  Stator Hubung Singkat Satu Fasa Ke Tanah (Stator Ground Fault)

   Kerusakan akibat gangguan 2 fasa atau antara konduktor kadang-kadang masih dapat diperbaiki dengan menyambung (taping) atau mengganti sebagian konduktor tetapi kerusakan laminasi besi (iron lamination) akibat gangguan 1 fasa ketanah yang menimbulkan bunga api dan merusak isolasi dan inti besi adalah kerusakan serius yang perbaikannya dilakukan secara total. Gangguan jenis ini meskipun kecil harus segera diproteksi. 

Stator Terhubung Singkat ke Tanah


-  Rotor Hubung Tanah (Field Ground)

   Pada rotor generator yang belitannya tidak dihubungkan ketanah (un- grounded system), bila salah satu sisi terhubung ketanah belum menjadikan masalah. Tetapi apabila sisi lainnya kemudian terhubung ketanah, sementara sisi sebelumnya tidak terselesaikan maka akan terjadi kehilangan arus pada sebagian belitan yang terhubung singkat melalui tanah. Akibatnya terjadi ketidak- seimbangan fluksi yang menimbulkan vibrasi yang berlebihan dan  kerusakan fatal pada rotor. 

-  Kehilangan Medan Penguat (Loss of Excitation)

  Hilangnya medan penguat akan membuat putaran mesin naik dan berfungsi sebagai generator induksi. Kondisi ini akan berakibat pemanasan Iebih pada rotor dan pasak (slot wedges), akibat arus induksi yang bersirkulasi pada rotor.

Kehilangan medan penguat dapat dimungkinkan oleh :

Jatuhnya (trip) saklar penguat .Hubung Singkat pada belitan  penguat.Kerusakan kontak-kontak sikat arang pada sisi penguat.Kerusakan pada sistem AVR.-  Tegangan Lebih (Over Voltage).

  Tegangan yang berlebihan melampaui batas maksimum yang diijinkan dapat berakibat tembusnya (breakdown) desain isolasi yang akhirnya akan menimbulkan hubungan singkat antara belitan. Tegangan lebih dapat dimung-kinkan oleh mesin putaran lebih (overspeed) atau kerusakan pada pengatur tegangan otomatis  (AVR). 

Ganguan Mekanis/Panas (Mechanical or Thermal Fault)

Jenis-jenis gangguan mekanik atau panas antara lain:

-  Generator Berfungsi Sebagai Motor (Motoring)

   Motoring adalah peristiwa berubah fungsinya generator menjadi motor akibat daya balik (reverse power).

Daya balik terjadi disebabkan oleh turunnya daya masukan dari penggerak utama (prime mover) . Dampak kerusakan akibat peristiwa motoring adalah lebih kepada penggerak utama itu sendiri . Pada turbin uap peristiwa motoring akan mengakibatkan pemanasan lebih pada sudu-sudunya, kavitasi pada sudu-sudu turbin air, dan ketidakstabilan pada turbin gas.

-  Pemanasan Lebih Setempat

   Pemanasan lebih setempat pada sebagian stator dapat dimungkinkan oleh :

Kerusakan laminasiKendornya bagian-bagian tertentu didalam generator seperti: pasak-pasak stator (stator wedges), terminal ujung-ujung belitan, dsb.-  Kesalahan Paralel

   Kesalahan dalam memparalel generator karena syarat-syarat sinkron tidak terpenuhi dapat mcngakibatkan kerusakan pada bagian poros dan kopling generator dan penggerak utamanya karena terjadinya momen puntir. Kemungkinan kerusakan lain yang timbul kerusakan PMT dan kerusakan pada kumparan stator akibat adanya kenaikan tegangan sesaat.

-  Gangguan Pendingin Stator

  Gangguan pada media sistem pendingin stator (pendingin dengan media  udara, hidrogen atau air) akan menyebabkan kenaikan suhu belitan stator. Apabila suhu belitan melampaui batas ratingnya akan berakibat kerusakan belitan.

Gangguan Sistem (System Fault)

  Generator dapat terganggu akibat adanya gangguan yang datang atau terjadi pada sistem. Gangguan-gangguan sistem yang umumnya terjadi antara lain: 

-  Frekuensi Operasi Yang Tidak Normal (Abnormal Frequency Operation

   Perubahan frekuensi keluar dari batas-batas normal di sistem dapat berakibat ketidakstabilan pada turbin generator. Perubahan frekuensi sistem dapat dimungkinkan oleh tripnya unit-unit pembangkit atau penghantar (transmisi). 

-  Lepas Sinkron (Loss of Synchron).

   Adanya gangguan di sistem akibat perubahan beban mendadak, switching, hubung singkat dan peristiwa yang cukup besar akan menimbulkan ketidakstabilan sistem. Apabila peristiwa ini cukup lama dan melampaui batas-batas ketidakstabilan generator, generator akan kehilangan kondisi paralel.

   Keadaan ini akan menghasilkan arus puncak yang tinggi dan penyimpangan frekuensi operasi keluar dan yang seharusnya sehingga akan menyebabkan terjadinya stress pada belitan generator, gaya puntir yang berfluktuasi dan resonansi yang akan merusak turbin generator. Pada kondisi ini generator harus dilepas dari sistem.

-  Pengaman Cadangan (Back Up Protection)

   Kegagalan fungsi proteksi didepan generator pada saat  terjadi gangguan di sistem akan menyebabkan gangguan masuk dan dirasakan oleh generator. Untuk ini perlu pemasangan pengaman cadangan.

-  Arus Beban Kumparan Yang Tidak Seimbang (Unbalance Armature Current).

   Pembebanan yang tidak seimbang pada sistem atau adanya gangguan satu fasa dan dua fasa pada sistem yang menyebabkan beban generator tidak seimbang dan menimbulkan arus urutan negatif. Arus urutan negatif yang melebihi akan menginduksikan arus medan yang berfrekuensi rangkap dengan arah berlawanan dengan putaran rotor dan akan menginduksikan arus pada rotor yang akan menyebabkan adanya pemanasan lebih dan kerusakan pada bagian-bagian konstruksi rotor.

Jumat, 03 Maret 2017

Electric Power System

Electric Power System

Duniapembangkitlistrik.blogspot.com - Sistem Tenaga Listrik (STL) adalah keterpaduan antar komponen sistem tenaga listrik (pembangkit, transmisi, distribusi, dan beban/konsumen) yang saling beroperasi dengan tujuan mengalirkan tenaga listrik dari pembangkit ke beban/konsumen. Sedangkan pada operasi di lapangan, digunakan istilah sistem interkoneksi tenaga listrik yang merupakan kumpulan beberapa pusat listrik (pembangkit) dan pusat beban (gardu induk) yang dihubungkan melalui jaringan transmisi dan distribusi. Contoh sistem ini adalah sistem interkoneksi tenaga listrik Jawa-Bali yang dioperasikan oleh PT PLN Penyaluran dan Pusat Pengatur Beban (P3B) Jawa-Bali.

Pembangkit merupakan komponen yang berfungsi untuk membangkitkan (menghasilkan) tenaga listrik. Tenaga listrik yang dibangkitkan merupakan hasil dari konversi energi dimana klasifikasi pembangkit berdasarkan sumber energi primernya antara lain :

1.    PLTA (Pusat Listrik Tenaga Air)

2.    PLTU (Pusat Listrik Tenaga Uap)

3.    PLTG (Pusat Listrik Tenaga Gas)

4.    PLTGU (Pusat Listrik Tenaga Gas dan Uap)

5.    PLTD (Pusat Listrik Tenaga Diesel)

6.    PLTP (Pusat Listrik Tenaga Panas Bumi)

7.    PLTS (Pusat Listrik Tenaga Surya)

8.    PLTB (Pusat Listrik Tenaga Bayu/Angin)

9.    PLTN (Pusat Listrik Tenaga Nuklir)

Sedangkan berdasarkan beban yang secara umum digunakan di Indonesia, pembangkit-pembangkit tersebut diklasifikasikan menjadi 3 jenis, yaitu :

1.    Beban Dasar (Base Load) : PLTU, PLTP

Karakteristik pembangkit beban dasar adalah sebagai berikut :

·      Memiliki biaya produksi yang murah,

·      Memiliki kapasitas yang besar, dan

·      Waktu starting yang lambat.

2.    Beban Menengah (Follower) : PLTGU, PLTD

Karakteristik pembangkit beban menengah adalah sebagai berikut :

·      Waktu starting yang cepat, dan

·      Memiliki kapasitas yang kecil.

3.    Beban Puncak (Peak Load) : PLTA, PLTG

Karakteristik pembangkit beban puncak adalah sebagai berikut :

·      Waktu starting yang cepat,

·      Memiliki kapasitas yang besar, dan

·      Memiliki biaya produksi yang mahal.

Jenis-jenis beban antara lain :

1.    Resistif,

2.    Kapasitif, dan

3.    Induktif.

Single Line Diagram atau Diagram Satu Garis adalah representasi dari sistem penyaluran tiga fasa. Standar listrik yang digunakan pada diagram ini antara lain

1.    IEC (International Electric Commision), 50 Hz

2.    ANSI (American Nation Standard Institute), 60 Hz