Selasa, 07 Maret 2017

Kinds of interference on the generator and its consequences


Dalam suatu operasi sistem tenaga listrik, terdapat banyak sekali kondisi yang mempengaruhi kinerja dari komponen-komponen yang ada didalamnya. Kondisi-kondisi tersebut dapat berupa kondisi normal (berbeban, tanpa beban, dll) dan juga kondisi tak normal (gangguan). Salah satu komponen sistem tenaga listrik yang kinerjanya berpengaruh jika sedang dalam kondisi gangguan adalah generator.

  Gangguan yang terdapat pada generator ada banyak jenis. Secara umum, gangguan pada generator dapat diklasifikasikan menjadi 3 jenis, yaitu : 

Gangguan Listrik (Electrical Fault)

Jenis gangguan ini adalah gangguan yang timbul dan terjadi pada bagian-bagian listrik dari generator. Gangguan-gangguan tersebut antara lain :

-  Hubung Singkat 3 (Tiga) Fasa

   Terjadinya arus lebih pada stator yang dimaksud adalah arus lebih yang timbul akibat terjadinya hubungan singkat tiga fasa (three phase fault). Gangguan ini akan menimbulkan loncatan bunga api dengan suhu tinggi yang akan melelehkan belitan dengan resiko terjadinya kebakaran jika isolasi tidak terbuat dari bahan yang anti api (non flammable).

-  Hubung Singkat 2 (Dua) Fasa

   Gangguan hubung singkat 2 fasa (unbalance fault) lebih berbahaya dibanding gangguan hubung singkat tiga fasa (balance fault) karena disamping akan terjadi kerusakan pada belitan, akan timbul pula vibrasi pada kumparan stator. Kerusakan lain yang timbul adalah pada poros (shaft) dan kopling turbin akibat adanya momen puntir yang besar.

-  Stator Hubung Singkat Satu Fasa Ke Tanah (Stator Ground Fault)

   Kerusakan akibat gangguan 2 fasa atau antara konduktor kadang-kadang masih dapat diperbaiki dengan menyambung (taping) atau mengganti sebagian konduktor tetapi kerusakan laminasi besi (iron lamination) akibat gangguan 1 fasa ketanah yang menimbulkan bunga api dan merusak isolasi dan inti besi adalah kerusakan serius yang perbaikannya dilakukan secara total. Gangguan jenis ini meskipun kecil harus segera diproteksi. 

Stator Terhubung Singkat ke Tanah


-  Rotor Hubung Tanah (Field Ground)

   Pada rotor generator yang belitannya tidak dihubungkan ketanah (un- grounded system), bila salah satu sisi terhubung ketanah belum menjadikan masalah. Tetapi apabila sisi lainnya kemudian terhubung ketanah, sementara sisi sebelumnya tidak terselesaikan maka akan terjadi kehilangan arus pada sebagian belitan yang terhubung singkat melalui tanah. Akibatnya terjadi ketidak- seimbangan fluksi yang menimbulkan vibrasi yang berlebihan dan  kerusakan fatal pada rotor. 

-  Kehilangan Medan Penguat (Loss of Excitation)

  Hilangnya medan penguat akan membuat putaran mesin naik dan berfungsi sebagai generator induksi. Kondisi ini akan berakibat pemanasan Iebih pada rotor dan pasak (slot wedges), akibat arus induksi yang bersirkulasi pada rotor.

Kehilangan medan penguat dapat dimungkinkan oleh :

Jatuhnya (trip) saklar penguat .Hubung Singkat pada belitan  penguat.Kerusakan kontak-kontak sikat arang pada sisi penguat.Kerusakan pada sistem AVR.-  Tegangan Lebih (Over Voltage).

  Tegangan yang berlebihan melampaui batas maksimum yang diijinkan dapat berakibat tembusnya (breakdown) desain isolasi yang akhirnya akan menimbulkan hubungan singkat antara belitan. Tegangan lebih dapat dimung-kinkan oleh mesin putaran lebih (overspeed) atau kerusakan pada pengatur tegangan otomatis  (AVR). 

Ganguan Mekanis/Panas (Mechanical or Thermal Fault)

Jenis-jenis gangguan mekanik atau panas antara lain:

-  Generator Berfungsi Sebagai Motor (Motoring)

   Motoring adalah peristiwa berubah fungsinya generator menjadi motor akibat daya balik (reverse power).

Daya balik terjadi disebabkan oleh turunnya daya masukan dari penggerak utama (prime mover) . Dampak kerusakan akibat peristiwa motoring adalah lebih kepada penggerak utama itu sendiri . Pada turbin uap peristiwa motoring akan mengakibatkan pemanasan lebih pada sudu-sudunya, kavitasi pada sudu-sudu turbin air, dan ketidakstabilan pada turbin gas.

-  Pemanasan Lebih Setempat

   Pemanasan lebih setempat pada sebagian stator dapat dimungkinkan oleh :

Kerusakan laminasiKendornya bagian-bagian tertentu didalam generator seperti: pasak-pasak stator (stator wedges), terminal ujung-ujung belitan, dsb.-  Kesalahan Paralel

   Kesalahan dalam memparalel generator karena syarat-syarat sinkron tidak terpenuhi dapat mcngakibatkan kerusakan pada bagian poros dan kopling generator dan penggerak utamanya karena terjadinya momen puntir. Kemungkinan kerusakan lain yang timbul kerusakan PMT dan kerusakan pada kumparan stator akibat adanya kenaikan tegangan sesaat.

-  Gangguan Pendingin Stator

  Gangguan pada media sistem pendingin stator (pendingin dengan media  udara, hidrogen atau air) akan menyebabkan kenaikan suhu belitan stator. Apabila suhu belitan melampaui batas ratingnya akan berakibat kerusakan belitan.

Gangguan Sistem (System Fault)

  Generator dapat terganggu akibat adanya gangguan yang datang atau terjadi pada sistem. Gangguan-gangguan sistem yang umumnya terjadi antara lain: 

-  Frekuensi Operasi Yang Tidak Normal (Abnormal Frequency Operation

   Perubahan frekuensi keluar dari batas-batas normal di sistem dapat berakibat ketidakstabilan pada turbin generator. Perubahan frekuensi sistem dapat dimungkinkan oleh tripnya unit-unit pembangkit atau penghantar (transmisi). 

-  Lepas Sinkron (Loss of Synchron).

   Adanya gangguan di sistem akibat perubahan beban mendadak, switching, hubung singkat dan peristiwa yang cukup besar akan menimbulkan ketidakstabilan sistem. Apabila peristiwa ini cukup lama dan melampaui batas-batas ketidakstabilan generator, generator akan kehilangan kondisi paralel.

   Keadaan ini akan menghasilkan arus puncak yang tinggi dan penyimpangan frekuensi operasi keluar dan yang seharusnya sehingga akan menyebabkan terjadinya stress pada belitan generator, gaya puntir yang berfluktuasi dan resonansi yang akan merusak turbin generator. Pada kondisi ini generator harus dilepas dari sistem.

-  Pengaman Cadangan (Back Up Protection)

   Kegagalan fungsi proteksi didepan generator pada saat  terjadi gangguan di sistem akan menyebabkan gangguan masuk dan dirasakan oleh generator. Untuk ini perlu pemasangan pengaman cadangan.

-  Arus Beban Kumparan Yang Tidak Seimbang (Unbalance Armature Current).

   Pembebanan yang tidak seimbang pada sistem atau adanya gangguan satu fasa dan dua fasa pada sistem yang menyebabkan beban generator tidak seimbang dan menimbulkan arus urutan negatif. Arus urutan negatif yang melebihi akan menginduksikan arus medan yang berfrekuensi rangkap dengan arah berlawanan dengan putaran rotor dan akan menginduksikan arus pada rotor yang akan menyebabkan adanya pemanasan lebih dan kerusakan pada bagian-bagian konstruksi rotor.

Jumat, 03 Maret 2017

Electric Power System

Duniapembangkitlistrik.blogspot.com - Sistem Tenaga Listrik (STL) adalah keterpaduan antar komponen sistem tenaga listrik (pembangkit, transmisi, distribusi, dan beban/konsumen) yang saling beroperasi dengan tujuan mengalirkan tenaga listrik dari pembangkit ke beban/konsumen. Sedangkan pada operasi di lapangan, digunakan istilah sistem interkoneksi tenaga listrik yang merupakan kumpulan beberapa pusat listrik (pembangkit) dan pusat beban (gardu induk) yang dihubungkan melalui jaringan transmisi dan distribusi. Contoh sistem ini adalah sistem interkoneksi tenaga listrik Jawa-Bali yang dioperasikan oleh PT PLN Penyaluran dan Pusat Pengatur Beban (P3B) Jawa-Bali.

Pembangkit merupakan komponen yang berfungsi untuk membangkitkan (menghasilkan) tenaga listrik. Tenaga listrik yang dibangkitkan merupakan hasil dari konversi energi dimana klasifikasi pembangkit berdasarkan sumber energi primernya antara lain :

1.    PLTA (Pusat Listrik Tenaga Air)

2.    PLTU (Pusat Listrik Tenaga Uap)

3.    PLTG (Pusat Listrik Tenaga Gas)

4.    PLTGU (Pusat Listrik Tenaga Gas dan Uap)

5.    PLTD (Pusat Listrik Tenaga Diesel)

6.    PLTP (Pusat Listrik Tenaga Panas Bumi)

7.    PLTS (Pusat Listrik Tenaga Surya)

8.    PLTB (Pusat Listrik Tenaga Bayu/Angin)

9.    PLTN (Pusat Listrik Tenaga Nuklir)

Sedangkan berdasarkan beban yang secara umum digunakan di Indonesia, pembangkit-pembangkit tersebut diklasifikasikan menjadi 3 jenis, yaitu :

1.    Beban Dasar (Base Load) : PLTU, PLTP

Karakteristik pembangkit beban dasar adalah sebagai berikut :

·      Memiliki biaya produksi yang murah,

·      Memiliki kapasitas yang besar, dan

·      Waktu starting yang lambat.

2.    Beban Menengah (Follower) : PLTGU, PLTD

Karakteristik pembangkit beban menengah adalah sebagai berikut :

·      Waktu starting yang cepat, dan

·      Memiliki kapasitas yang kecil.

3.    Beban Puncak (Peak Load) : PLTA, PLTG

Karakteristik pembangkit beban puncak adalah sebagai berikut :

·      Waktu starting yang cepat,

·      Memiliki kapasitas yang besar, dan

·      Memiliki biaya produksi yang mahal.

Jenis-jenis beban antara lain :

1.    Resistif,

2.    Kapasitif, dan

3.    Induktif.

Single Line Diagram atau Diagram Satu Garis adalah representasi dari sistem penyaluran tiga fasa. Standar listrik yang digunakan pada diagram ini antara lain

1.    IEC (International Electric Commision), 50 Hz

2.    ANSI (American Nation Standard Institute), 60 Hz

Kamis, 23 Februari 2017

Potensi Bahaya Pada Boiler

Duniapembangkitlistrik.blogspot.com - Pesawat Uap atau juga disebut Ketel Uap adalah suatu pesawat yang dibuat untuk mengubah air didalamnya, sebagian menjadi uap dengan jalan pemanasan menggunakan pembakaran dari bahan bakar. Ketel uap dalam keadaan bekerja, adalah sebagai bejana yang tertutup dan tidak berhubungan dengan udara luar karena selama pemanasan, maka air akan mendidih selanjutnya berubah menjadi uap panas dan bertekanan, sehingga berpotensi terjadinya ledakan jika terjadi kelebihan tekanan (over pressure). Prinsip kerjanya yaitu dengan semakin tingginya tekanan uap maka setiap ketel harus mampu menahan tekanan uap ini. Dengan memanfaatkan tekanan uap ini maka dapat digunakan untuk menggerakan mesin atau generator untuk menghasilkan energi listrik.

Bejana tekan adalah suatu wadah untuk menampung energi baik berupa cair atau gas yang bertekanan atau bejana tekan adalah selain pesawat uap yang mempunyai tekanan melebihi tekanan udara luar (atmosfer) dan mempunyai sumber bahaya antara lain; kebakaran, keracunan, gangguan pernafasan, peledakan, suhu ekstrem.

Pemanfaatan bejana tekan akhir-akhir ini telah berkembang pesat di berbagai proses industri barang dan jasa maupun untuk fasilitas umum dan bahkan di rumah-rumah tangga. Bejana tekanan merupakan peralatan teknik yang mengandung resiko bahaya tinggi yang dapat menyebabkan terjadinya kecelakaan atau peledakan. Tingginya resiko kecelakaan kerja dibidang Pesawat Uap dan Bejana Tekan (PUBT) membuat perusahaan semakin waspada akan bahaya yang mungkin ditimbulkan dari kecelakaan kerja PUBT.

Pesawat uap dan bejana tekan merupakan sumber bahaya termasuk operator pesawat uap yang mana potensi bahaya ditimbulkan akibat penggunaan atau pengoperasian pesawat uap dan bejana tekan meliputi semburan api, air panas, gas, fluida, uap panas, debu, panas/suhu tinggi, bahaya kejut listrik, dan peningkatan tekanan atau peledakan. Agar kecelakaan tidak timbul dalam kerja yang menggunakan pesawat uap maupun bejana tekan, maka pemahaman tentang pesawat uap dan bejana tekan serta syarat-syarat K3 adalah sangat penting supaya dapat melakukan pengawasan K3 pada pesawat uap dan bejana tekan. Hal ini juga ditetapkan dalam UU No.1 Tahun 1970 pasal 3, “Pengawasan tidak hanya pada produk namun diawali dari proses produksi atau pembuatan pesawat uap dan bejana tekan yang banyak dilakukan proses pengelasan, pengujiaan produk hingga penerbitan ijin pemakaian pesawat uap dan bejana tekan”.

Agar tidak terjadi ledakan, suatu ketel harus memenuhi syarat-syarat sebagai berikut :

1. Harus hemat dalam pemakaian bahan bakar. Hal ini dinyatakan dalam rendemen atau daya guna ketel.
2. Berat ketel dan pemakaian ruangan pada suatu hasil uap tertentu harus kecil.
3. Paling sedikit harus memenuhi syarat-syarat dari Direktorat Bina Norma Keselamatan Kerja Departemen Tenaga Kerja.

Berikut ini sumber bahaya pada pesawat uap, antara lain :

1. Bila manometer tidak berfungsi dengan baik, atau bila tidak dikalibrasi dapat menimbulkan peledakan karena si operator tidak mengetahui tekanan yang sebenarnya dalam boiler dan alat lain tidak berfungsi.
2. Bila safety valve tidak berfungsi dengan baik karena karat atau sifat pegasnya menurun.
3. Bila gelas duga tidak berfungsi dengan baik yang mana nosel-noselnya atau pipa-pipanya tersumbat oleh karat sehingga jumlah air tidak dapat terkontrol lagi.
4. Bila air pengisi ketel tidak memenuhi syarat.
5. Bila boiler tidak dilakukan blow down dapat menimbulkan scall atau tidak sering dikunci.
6. Terjadi pemanasan lebih karena kebutuhan produksi uap.
7. Tidak berfungsinya pompa air pengisi ketel.
8. Karena perubahan tak sempurna atau rouster, nozel fuel tidal berfungsi dengan baik.
9. Karena umur boiler sudah tua sehingga material telah mengalami degradasi kualitas.

Dalam proses pembuatannya perlu dilakukan pemilihan material yang tahan korosi bila terlalu mahal atau tidak ada di pasaran maka dapat dipilih material dengan laju korosi yang paling lambat namun perlu dilakukan inspeksi secara berkala untuk menghindari terjadinya kebocoran atau ledakan.

Rabu, 22 Februari 2017

Apa itu Black Out ?

Duniapembangkitlistrik.blogspot.com- Mati listrik atau sering disebut “mati lampu” merupakan hal yang tidak menyenangkan bagi banyak orang, terlebih lagi bagi para pelaku bisnis dan industri, atau dalam istilah kelistrikan disebut Black Out. Kenapa Black Out dapat terjadi? apa yang menyebabkan Black Out?
Black Out atau padam total adalah keadaan dimana hilangnya seluruh sumber tenaga pada suatu sistem tenaga listrik. Karena proses bisnis PLN yang kompleks dari hulu ke hilir, antara lain dibagi menjadi 3 bagian, yaitu Pembangkitan, Transmisi dan Distribusi, maka kehandalan tiap – tiap sistem harus dipertahankan dan dijaga, agar kontinuitas penyaluran tidak terganggu  dan terhindar dari padam total (Black Out).
Dari pengalaman saya bekerja selama 2 (dua) tahun di Bidang Distribusi PLN, maka saya ingin berbagi agar para pembaca  mengetahui apa saja penyebab – penyebab yang dapat mengakibatkan terjadinya Black Out.
Sisi hulu (Pembangkitan dan Transmisi)
Ketidaksiapan pembangkit merupakan salah satu penyebab padam listrik dari sisi hulu. Pada sistim Pembangkit Interkoneksi atau pembangkit yang saling terhubung satu sama lain, jika ada salah satu pembangkit jatuh maka pembangkit yang lain harus memikul beban pembangkit yang jatuh tersebut. Karena beban yang berlebih maka pembangkit lainnya juga ikut jatuh. Seperti halnya jika ada 2 (dua) orang yang mendayung satu sampan, jika satu orang tidak ikut mendayung maka yang lainnya akan merasa kelelahan akibat beban yang terlalu berat dan akhirnya sampan terbalik dihantam gelombang.
Untuk memulihkan sistim yang jatuh tadi juga memerlukan waktu, jadi kenapa jika saat terjadi mati listrik diharapkan pelanggan agar dapat bersabar. Contohnya untuk PLTM (Pembangkit Listrik Tenaga Mikrohidro) tidak bisa serta merta setelah mati dapat langsung dihidupkan begitu saja setelah terjadi Black Out, oleh karena itu pembaca patut mengetahui suatu PLTM membutuhkan listrik dari pembangkit lain untuk memompa oli, membuka valve, menyalakan instrumen elektronik, dan sebagainya. Biasanya PLTM memerlukan pembangkit yang dapat melakukan Black Start atau pembangkit yang berfungsi sebagai penggerak mula (Prime Movers). Black start dilakukan oleh Generator yang digerakan oleh mesin Diesel yang notabanenya hanya memerlukan accu atau angin untuk melakukan start engine, yang kita kenal sebagai PLTD (Pembangkit Listrik Tenaga Diesel). Kemudian setelah PLTD beroperasi dan menghasilkan listrik, lalu dapat mensupply ke PLTM barulah sistem Interkoneksi dapat berjalan lagi. Selanjutnya tahap penormalan dilakukan agar supply energi listrik dapat tersalurkan sampai ke sisi pelanggan.
Sisi hilir (Distribusi) 
Kehandalan sistim Distribusi sama pentingnya dengan sistim pembangkitan, bak mata uang yang memiliki 2 sisi, keduanya harus berjalan saling mengisi. Motto dari bidang Distribusi yang selalu kami pegang adalah ” pantang padam, jika padam jangan lama, jika sudah menyala jangan padam lagi”.
Melokalisir gangguan agar tidak meluasnya pemadaman adalah tugas bidang Distribusi. Gangguan pada Jaringan Distribusi dapat diakibatkan oleh faktor Eksternal dan Internal.
Faktor Eksternal, antara lain :
PetirPepohonanPekerjaan/sumber lainBinatangPenggalian
Faktor Internal :
Dapat diakibatkan oleh kondisi komponen dan peralatan yang terpasang di jaringan, baik karena usia maupun karena kesalahan pemasangan (human error).
Dari beberapa hal diatas, gangguan jaringan yang paling banyak terjadi adalah gangguan yang diakibatkan oleh pohon, mulai dari dahan pohon yang menyentuh jaringan sampai pohon yang tumbang, yang mengakibatkan robohnya jaringan.  Untuk itu selayaknya sebagai sesama pengguna listrik dan selebihnya sebagai insan PLN saya menghimbau agar para pembaca bersama – sama dapat menjaga jaringan listrik yang ada disekitar kita, yaitu dengan tidak menanam pohon dibawah jaringan dan tidak menebang pohon yang ada didekat jaringan tanpa pemberitahuan kepada petugas PLN.
Oleh karena itu pada saat mati listrik atau kalo’ kata orang “mati lampu” para pembaca dapat mengetahui bahwa dibalik semua itu ada orang – orang yang sedang berjuang dan berusaha.
Dari hulu sampai hilir,
Dari pembangkitan sampai Distribusi
Agar listrik dapat menyala kembali.

Senin, 20 Februari 2017

Apa itu AMR ?

Duniapembangkitlistrik.blogspot.com - Automatic Meter Reading (AMR) merupakan salah satu solusi untuk bidang elektronika dalam melakukan pembacaan dan pemakaian energi listrik. Dimana pemakai Automatic Meter Reading (AMR) dapat memonitoring pemakaian daya listrik. Dalam pengoperasiannya sistem Automatic Meter Reading (AMR) melakukan pembacaan energi listrik dengan cara menurunkan terlebih dahulu tegangan listrik dari 40 KV menjadi 220 V menggunakan current transformer, kemudian tegangan dikonversikan menjadi data digital pada mesin meteran agar dapat diukur dengan parameter pengukuran seperti daya, energi, dll. Setelah ini data digital masuk ke bagian pengolahan dan komunikasi, pada bagian ini data digital dapat disimpan ke memori, ditampilkan lewat LCD display, atau dikirimkan ke database PLN lewat modem.
AMR (Automatic Meter Reading) merupakan aplikasi ini digunakan untuk pengendalian dan pemantauan tenaga listrik pada pelanggan. Apabila fasilitas ini digunakan oleh PLN, maka meter listrik pada pelanggan dapat dibaca secara online dan sistem billing menggunakan paket program yang sudah tersedia.
Automatic Meter Reading (AMR) juga sering disebut sistem pembacaan meter jarak jauh secara otomatis, terpusat dan terintegrasi dari ruang kontrol melalui media komunikasi telepon publik (PSTN), telepon selular (GSM), PLC atau gelombang radio, menggunakan software tertentu tanpa terlebih dahulu melakukan pemanggilan (dial up) secara manual. Sistem AMR diterapkan pada pelanggan potensial dengan daya terpasang diatas 197 kVA. 
Konfigurasi peralatan yang digunakan :
1. meter elektronik atau digital yang dipasang di pelanggan.
2. modem dan saluran telepon.
3. komputer yang terdapat diruang kontrol.
Dengan dipasangnya AMR pada pelanggan maka pemakaian kwh oleh pelanggan dapat dipantau / dibaca setiap saat dari kantor PLN dengan hasil yang lebih akurat dengan bantuan aplikasi komputer sehingga kesalahan baca yang dilakukan pertugas tidak akan terjadi dan kepercayaan pelanggan kepada PLN dapat tetap terjaga.
MANFAAT AMR
- Pemakaian kwh oleh pelangggan dapat dipantau / dibaca setiap saat.
- Hasil pembacaan meter lebih Akurat.
- Evaluasi beban pelanggan.
- Upaya peningkatan mutu pelayanan melalui data langsung penggunaan energi listrik yang dikonsumsi oleh pelanggan yang bersangkutan
CARA KERJA AMR
Awalnya, pembacaan meter dilakukan dengan menggunakan kabel (wired) atau direct dialling/reading. Komputer terhubung ke meter dengan menggunakan kabel komunikasi (RS-232 atau RS-485) atau optical probe jika pembacan dilakukan di lapangan. Namun belakangan ini, banyak teknologi komunikasi yang dapat digunakan oleh sistem AMR. Seperti PSTN (telpon rumah), GSM, Gelombang Radio, PLC (Power Line Carrier), dan terakhir, memungkinkan pembacaan meter menggunakan LAN/WAN/WIFI untuk meter yang sudah support TCP/IP.
Digital KWH meter ini dikontrol oleh sebuah mikrokontroler dengan tipe AVR90S8515 dan menggunakan sebuah sensor digital tipe ADE7757 yang berfungsi untuk membaca tegangan dan arus (dengan beban mencapai 500 Watt) untuk mengetahui besar energi yang digunakan pada instalasi rumah. Seven Segment sebagai penampil data besaran energi listrik yang digunakan di rumah.Dari komponen-komponen tersebut dihasilkan sebuah KWH meter moderen dengan tampilan digital yang dapat mengukur besaran penggunaan energi, dengan batasan maksimal beban 500 watt. Dengan sebuah system pembayaran moderen membeli sebuah voucher elektronik, berisi besaran digital (berfungsi sebagai pulsa) sebagai pembanding besaran energi yang digunakan. Secara otomatis sistem ini memutuskan tegangan rumah bila besaran tersebut mencapai nilai 0. Seluruh rangkaian membutuhkan daya 446,5mW diharapkan tidak merugikan PLN.
Dengan dipasangnya AMR pada pelanggan maka pemakaian kwh oleh pelanggan dapat dipantau / dibaca setiap saat dari kantor PLN dengan hasil yang lebih akurat dengan bantuan aplikasi komputer sehingga kesalahan baca yang dilakukan pertugas tidak akan terjadi dan kepercayaan pelanggan kepada PLN dapat tetap terjaga.
Keuntungan lain dalam penggunaan sistem AMR ini adalah :
- pencatatan meter lebih akurat.
- proses penerbitan rekening lebih cepat.
- penggunaan energi listrik dapat terpantau.
- upaya peningkatan mutu pelayanan melalui data langsung penggunaan energi listrik yang dikonsumsi oleh pelanggan yang bersangkutan.

 
biz.